CRISPR Prevents Liver Disease In Mice Before Birth

CRSIPR Genetic Therapy Potential

Recently, a research team at the University of Pennsylvania and the Children’s Hospital of Philadelphia (CHOP) released a study focusing on the use of CRISPR genome editing technique, in which they were able to alter the DNA of laboratory mice in the womb, eliminating the potential of an often-fatal liver disease prior to birth. Although this research is years away from being able to utilize the CRISPR technique in human fetuses for the same purpose, it is a step in the right direction with potential.

CRISPR vs. Traditional Gene Therapy

Lab Mouse With Genetic DefectsThis recent success suggests the possibility of genome editing’s use as an alternative to current gene therapy. In traditional gene therapy, an entire gene is affected, typically through the use of a virus to target cells which contain the disease-causing gene. By utilizing CRISPR, only the mutated part of the gene is changed. Think of it like buying a completely new car for a defective part rather than simply replacing that specific part. The reasoning for genetic therapy is simple: it prevents the negative, irreversible or even fatal, effects of a disease.

The Study

Dr. Musunuru and his team of researchers focused on the applications of the CRISPR technique, targetting hereditary tyrosinemia type I, which is an inherited disease that damages the liver months before birth. Their methodology involved removal of the fetus from a pregnant mouse and injection of CRISPR into the vitelline vein, specifically because it is near the surface of the amniotic sac and, more importantly, because it connects to the liver. They utilized a form of CRISPR called base editing, which changes an incorrect DNA nucleotide base, rather than the traditional form of CRISPR, which cuts DNA at the mutated location and inserts replacement nucleotides. This process doesn’t need to cut the DNA, preventing any complications resulting from the cutting process.

They first completed a trial run, using a gene called PCSK9, which is a protein involved in cholesterol level regulation in the bloodstream. In this trial, it only affected the liver as intended and had no effects on the mother. It also resulted in low-cholesterol levels, demonstrating the base editing success. It is important to note that these results were seen even when only 15 percent of cells were affected, lasting through the animals’ adulthood.

They then used this base editor on a gene, HPD, related to hereditary tyrosinemia, and their results demonstrated disabling of the HPD gene. Similar to the trial study, only 15 percent of the liver cells were edited, and yet this was enough to cure the mice. They remained unaffected through adulthood.  Although there are numerous other steps and research that must be done before this can be utilized in clinical research, these results are truly promising. The team hopes to apply this research to other severe congenital diseases, realizing that this research should simply be used as an additional tool, rather than replacement current gene therapy techniques.



Want to Stay Informed?

Join the Gilmore Health News Newsletter!

Want to live your best life?

Get the Gilmore Health Weekly newsletter for health tips, wellness updates and more.

By clicking "Subscribe," I agree to the Gilmore Health and . I also agree to receive emails from Gilmore Health and I understand that I may opt out of Gilmore Health subscriptions at any time.